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ABSTRACT

Two composite equations of state have been used in
the investigation of the structure of neutron (or hy-
peron or baryon) stars. These have been based upon
two forms of the neutron-neutron potential suggested
by Levinger and Simmons. In one form repulsive forces
come in quickly at greater than nuclear densities; in the
other form the repulsive forces come in slowly. 1In the
former case the maximum stable mass of a neutron star is
about two solar masses; whereas in the latter case it
is only about one solar mass. This probably represents
a measure of the basic uncertainty in the properties
of neutron star models due to our lack of knowledge of
nuclear forces. The maximum central density of a stable
configuration is similarly uncertain; this density
probably lies in the range 1015 to lO16 grams/cm3.
Details of many of the neutron star models calculated

are summarized and discussed.
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INTRODUCTION

The problem of the properties of highly condensed matter
has a long history. The first important contributions came as
early as in the period of 1930-40, from Chandrasekhar (1935, 1939),
Landau (1932), Oppenheimer and Serber (1938), Oppenheimer and
Volkoff (1939), and others. For a degenerate body under gravita-
tional attraction there may exist two possible equilibrium states,
the less condensed state composed of electrons and nuclei, and
the more compressed state of neutronic or baryonic configuration.
The "electron-nuclear" state corresponds to the observed white
dwarf stars. It was suggested (Zwicky 1938, 1939, and 1958)
that the more conaensed state of nuclear density might be
physically realized in a form of a neutron star formed as the
result of a supernova explosion, at the last stage of evolution
of a sufficiently massive star. This view was somewhat neglected
for a long time. However, there has recently arisen a possibility
that a neutron star formed as a remnant of a supernova explosion
may directly or indirectly be responsible for some of the celestial
X-ray sources now known to exist (Chiu 1964, Chiu and Salpeter
1964, Morton 1964, Tsuruta 1964, Cameron 1965, and others), and
the importance of the study of highly condensed matter has been

greatly increased. Even aside from the problem of observing




these stars, the study of degenerate stars is important in itself

as a fundamental problem in physics. J.A. Wheeler and his

collaborators have been pursuing the problem of degenerate stars

since 1958 in connection with gravitation theory and gravitational

collapse. The best collection of their work is found in Harrison,

Thorne, Wakano and Wheeler (1965). Some other recent contributions to

this problem are those of Cameron (1959), Amburtsumyan and Saakyan (1960,

1962, a,b), Sahakian and Vartaman (1963), and Misner and Zapolsky (1964).
In considerations of neutron stars the greatest uncertainty

is caused by lack of knowledge of high energy physics, and, for

this reason, the interaction forces between neutrons were usually

neglected in‘most of the previous work. However, the typical

density in neutron stars is as high as ~ lO15 gm/cm3 or more,

for which the nuclear forces between the constituent particles

are far too important to be neglected. It should be emphasized

that an exact knowledge of the nuclear forces near and just above

nuclear densities (around 1014 < p < lO16 gm/cm3) is required

to determine the gquantitative properties of the models not only
in this range but also for far denser configurations. It is
likely that denser matter, p > lO16 gm/cm3, should follow a
simple asymptotic equation of state of the polytropic form

Y -

P =cn' = (y-1)e, with the value of y properly chosen (where

P is the pressure, ¢ is a constant, y is the adiabatic exponent




and € is the energy density), but the important question is:

to what nuclear equation of state should this be joined in the
lower density region near the surface? Some efforts have been
made in recent years to take into account these nuclear forces
by Cameron (1959), Amburtsumyan and Saskaan (1962a) and others.
In this paper we explore this problem in more detail.

For this purpose, we have chosen two possible forms of the
nuclear interaction between neutrons as suggested by Levinger and
Simmons (1961). The possible application of these nuclear potentials
to the problem of neutron stars was proposed by Salpeter (1963).
These potentials are consistant with our knowledge of nuclear
forces in the vicinity of normal nuclear densities, if we
assume charge independence of these forces. However, the uncer-
tainty is increased as the density goes higher. Hence, the
difference in the models constructed by the use of these two
different nuclear potentials may give an indication of the
uncertainty due to the lack of knowledge in this field.

In a physically realistic equation of state the pressure
is not allowed to become indefinitely large. Therefore, either
one of the possible pressure saturation conditions P < ¢/3
(Landau and Lifshitz 1959) or P < ¢ (Zel'dovich 1962) were
applied in our models. In our composite equation of state the

equilibrium composition of degenerate matter was used. For




densities lower than about 3 x 10ll gm/cm3 matter consists of
degenerate electrons and various.heavy nuclei. The most abundant
nucleus changes from iron to more neutron-rich nuclei with increas-
ing density (Tsuruta and Cameron 1965). For densities higher
than this, heavy ions gradually disolve into neutrons. The
system then consists of neutrons, protons and electrons in
equilibrium. Near and above lO15 gm/cm3, mesons and other baryons
appear. The threshold density at which these new particles appear
is quite uncertain due to the lack of knowledge of the interaction
forces between the strongly interacting particles. However, as
will be shown later, the effect of the possible change of compo-
sition due to the shifting of the threshold energy for the
appearance of these particles is very small. At the present
stage, we are very ignorant concerning the quantitative nature
of the strong interaction forces between hyperons, but we know
that these forces are of the same nature as the nuclear forces
which are responsible for the binding of nucleons together in
a nucleus. Hence it was assumed that the same Levinger-Simmons
type nuclear potentials were experienced by all the nucleons
and hyperons which are present in the assembly.

This paper is confined to cold models of degenerate stars.

The cooling of such stars will be treated in a separate paper.




HYPERONIC MIXTURES

When densities exceed about 3 x 10ll gm/cm3, all heavy ions
become unstable against disintegration to neutrons by means of
electron capture, and matter consists mainly of neutrons. These
neutrons are, however, unstable against decay to protons and
electrons by 0.783 Mev, the neutron-hydrogen mass difference, and
the neutron gas is always contaminated with protons and electrons.
When the Fermi energy of the electrons reaches the rest mass of
the muon, 106 Mev, neutrons can be transformed into protons and
negative muons. With further increase of energy, various kinds

of hyperons are created. Some of the many possible hyperon pro-

duction reactions are:

2n - p+I, 2n - 2\, 2n - p+E", 2p - 25,

20 = 23°, 20 - 2E°, ntp - ptET . (1)

We note that in these reactions strangeness is not conserved.
The time scale of processes like (1) is on the order of 10_9 sec,
which is long compared with nuclear time scales but extremely
short from the astronomical point of view. Even though faster
reactions exist, the above examples are fast enough to maintain
equilibrium. Consequently we can safely assume that thermodynamic

equilibrium is maintained throughout.




The densities at which these meson and hyperon transforma-
tions take place are above nuclear densities, and all the
constituent baryons and leptons become highly degenerate soon
after creation at the threshold energy. Even when the temperature
is as high as 5 x 109 °x (a typical maximum temperature of
interest in the problem of neutron stars) their degeneracy is
so high that the cold matter approximation is fully justified.
(For instance, at T = 5 x 109 °K and p = 1015 gm/cm3, the ratio
of neutron Fermi energy to KT is about 400). Therefore, we can
assume that all the constituent particles are in their lowest
energy states.

Some years ago we had a rather tidy list of about 30 so-
called "elementary" particles. Today 60 to 70 more have been
added. The first problem we face is to determine which of this
profusion of particles survive as the authentic components of
our baryon gas in our range of interest. First of all, positrons,
photons, neutrinos, positive muons and pions, and K mesons are
all absent at zero temperatures because nothing prevents their
decay and annihilation. On the other hand, stability is established
among hyperons, nucleons, negative muons and electrons, because
the decay products of these particles find no unoccupied place
in phase space due to the complete degeneracy of baryons and

electrons and the Pauli exclusion principle. The stability of




negative pions is established through the high degeneracy of
negative muons at very high densities. The presence of the newly
discovered particles is restricted due to the fact that most of
these particles are heavier states of familiar mesons, nucleons,
and hyperons, and that the upper limit of density of interest

to us is about 10l6 gm/cm3. This is because the equation of

state for densities higher than this value becomes independent

of the kind and the concentration of particles present as explained
in the next section. Consequently, the following thirteen
particles were selected as sufficient for our investigation,

following Ambartsumyan and Saakyan (1960):

- - + - - -
e, u,p, p* n, n*, A, =%, 5, 5, 8% 27, ¢ (2)

n* and p* are isobars of neutrons and protons in the first excited
states, now called delta particles.

The concentration and the threshold energy of the appearance
of each of these particles are determined by minimizing the total
energy subject to the constraints of conservation of charge and

baryon number. The results may be expressed as:

+
+ = _— = (3a)
Eb Ee Eb Ee Eb
E =E =E_ (3b)
L e T
Zn-';—an_)—ZnZ—n,;—ne=O (3d)
b b 4




where E and n represent the total energy and total number density.
The superscripts +, -, and O refer to individual positive, negative,
and neutral particles, and the subscripts b, 4, 7 and e refer to
baryons, leptons excluding electrons, pions, and electrons. The
first two equations correspond to thermodynamic equilibrium and

the last two equations represent the conservation of baryon

number and the conservation of electric charge, respectively. In

a macroscopic medium consisting of sub-atomic particles, only the
average potential energy of the particle is worth mentioning, as

it represents the interaction of one particle with all the others.

In such a case, the total energy E; of completely degenerate

k

fermions k can be expressed as

1/2
_ 2 4 CFN 2
Ek—[Mkc + (py. Je il + v, (4)
where
F_ en\Y3 1/3
pk T \a, / h nk

is the Fermi momentum, Mk is the mass, and V., is the average inter-

k

action potential of the particles k. (a, is as defined in (5)).

k
The first two terms represent the chemical potential. For completely
degenerate bosons the chemical potential is just the rest mass of

the particle. The present state of the theory of elementary particles

is so far in no position to give any definite information on the inter-
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action potentials of strongly interacting particles for densities
substantially exceeding nuclear density. Hence, at present we
do not know how to improve upon the simple assumption that all

baryons interact identically (that is, Vk for all baryons are

equal). We neglect Vk in calculating the composition of the

medium, but not its pressure. Interaction potentials of leptons
can always be neglected in the problem of neutron stars (Salpeter,

1961). The concentration n, of the particles k in a hyperonic

mixture may then be found from

. 3/2

1 i 2/3

- [1-(Ak/ni) :] (5)

where

. 3/2

i _ 1 r 2

A = —5 5 [y /)7 ]
3m kk

= C 1 3
kk h/(Mk ), Mk is the mass of a particle k,

= -+ 1 3 3
ak ZIk 1, Ik the spin of the particle Kk,

1 .

[Ik = 3/2 for n* and P¥*, Ik = > for others in (2)]
i = e when %k = oo
. o .
i=n when k = A, ¥, E or n¥*,
i =P when k =% or P¥, and

> when %k =& .

._l.
I
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When ni < Ai no particles k exist and therefore Ai is the threshold
number density of the particles i for the creation of particles k.
The numbers of muons are expressed in terms of electron numbers,
the numbers of the positively charged baryons are expressed in
terms of proton numbers, those of negatively charged baryons =

are expressed in terms of Z_, and the numbers of neutral baryons
are expressed in terms of neutrons. Hence equations (5) give

the concentration of all particles k as a function of neutron
number density n_. if the number densities of electrons, protons
and % , n . N and n_-, are known as a function of n_ . These

P z

are determined from

E + E =E
P e n
E - = B 6
z- Ee n (6)
and the last two equations in (3). This problem was solved by

an iterative procedure. Once the concentrations of the constituent

particles are known, the total density of matter is found from

o =) mM, )

k

where the summation is taken over all particles k which are present.
When the threshold energies of electrons and negative muons
exceed the rest mass of negative pions it is more economical

energetically if e  and u are converted to 7 . In this case,
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the number densities of e and u- stay constant with further

increase in total density, at the values

n o=1.2 x 1057 en”> = (3n2x 3)'l
e 11l
36 -3 c3 2 2,3/2,.3
n = 3.36 x 10 cm = —=— (m -m ) V4 (8)
I 3TT2 il

This is because all the excess electrons and u— above the threshold
value are converted to m in a higher density region.

When the electron threshold energy is lower than the muon
rest energy, but when the sum of the proton and electron theshold
energies is larger than the neutron rest energy, the abundance

equations take the simpler form:

-3 2 2/3-.1/2 3
= = + + -
n, =mn, =mnxX {{1+ayx/m + ¥ (nn/no) ] 1}
with
a = (Mn-M.p)/me = 2.54; X = 2nme/Mp,
_ 3 3
n_ = 8(mec/h) = 8/><e (9)
and

Mn + Mn
PP nn

o

For densities lower than ~ 3 x lOll gm/cm3, the equilibrium

nuclear abundances of various heavy nuclei as calculated by

Tsuruta and Cameron (1965) apply.
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The results are summarized in Figure 1. The number densities
of various baryons k are plotted as functions of the total density
p. For p < 1015 gm/cm3 the total baryon number density and nuetron
number density practically coincide. For p 2 3 X 1015 gm/cm3 the
rapid rise in the densities of other baryons depresses the neutron
density considerably below the total baryon density. For densities
higher than about 5 x lO16 gm/cm3 the concentrations of all kinds
of baryons are about 1039 - lO40 cm—3 and they are all of the
same order of magnitude. The electrons and i densities exhibit
a sudden drop a little above p = 1015 gm/cm3, where the & hyperons
appear. ne and n Dbecome constant around p = 1017 gm/cm3, due to
the creation of m mesons.

It may be worthwhile to note that the order in which the
particles appear is not in the order of increasing masses. For
instance, ¥ is heavier than A, but ¥ begins to appear at lower
densities than A. The reason is that the ¥ hyperons have to
neutralize the positive charge of the protons whose concentration
increases with increasing n . and starting from a certain point
the production of T is energetically more economical than that
of one new proton and two new electrons. A similar argument
explains why the o hyperons appear at lower densities than the
Z+ hyperons which are lighter than 2 . For p 2 1.4 x lO17 gm/cm3

the m density increases so rapidly with further increase in

density thatit soon becomes of the order of the densities of the




other members of the mixture.

The general results for the whole region are shown in
Figure 2. In order to avoid overcrowding, the hyperons in this
graph have been grouped together in a strip. The rise of the
densities of these particles is so rapid right after the thresholds
have been crossed that the effect of nondegeneracy can safely be
neglected. The neutron Fermi energy is about 510 Mev when

038 cm—3. All through the region of the hyperon phase

n ~6x1
n

the electron number densities are roughly two to three orders of

magnitude lower and the u meson number densities are about
three to four orders of magnitude lower than the neutron number

densities.

Recently, Bahcall and Wolf (1965) raised the question of the

. o 14
presence of pions even near normal nuclear densities (~ 4 x 10
3 .. . . . .
gm/cm” ). This is possible only if pions have a sufficiently small
effective mass. If protons and neutrons were present with equal

abundance, this might be realized. However, both Bahcall and
Ruderman, through recent private communications, indicated to one
of us (Cameron) their expectations that, under the conditions in
which pions may be present in a neutron star (where np/nn is quite
small), there will be a predominantly repulsive interaction
between the pions and neutrons. This would raise rather than

lower the effective mass of the pions, which makes it very
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unlikely that pions will be present in neutron stars.

COMPOSITE EQUATION OF STATE

As we go outward from the center of a neutron star, the
density decreases from the central value. If the central density
is higher than about lO15 gm/cm3, we will have a mixture of
hyperons, nucleons, mesons and electrons in the central region,
neutron-dominated intermediate layers (with a small admixture of
protons and electrons), and outermost layers of electrons and heavy
ions. 1In this section we consider how the pressure depends on
density in these complex layers. The equation of state is most

conveniently expressed as:
P=P + P__: € = ¢ + € (10)

where P is the total pressure, ¢ is the total energy density and
the subscripts KE and PE stand for the kinetic and potential terms,
respectively. The kinetic parts are expressed as

Mk 4 ak

= XY X inn -
€ K ]%(Mn> 7 (®inh t - t)

K M. 4a t

n k k

P =73 <_> X : _ . X

KE 3 5 Mn > (sinh tk 8 sinh > + 3tk)

(11)

where the summation is taken over all particles in (2) which are

present, and
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2 3 3
K = Mn4c5/(32ﬂ # )= 5.117 x 10 > dynes/cm2

V]
|

X (2Ik+l) as given in Equation (5)
1/3

t, = 4 sinh—l r<éﬂi> £, 1/3]

k L a, Mkc k (12)

and the remaining notation 1is that given in the last section.
Each term in Equation (11l) corresponds to the partial pressure
or partial energy density (including rest mass energy) of
completely degenerate fermions k of a particular kind, and
applies to both non-relativistic and relativistic particles.

At the present time, the behavior of nuclear forces in
the high energy region is not well known. However, various
models of nuclear potential near the region of nuclear density
have been constructed by different authors (Brueckner and Gammel
1958; Brueckner, Gammel, and Kubis 1960; Sood and Moszkowski
1960; de Swart and Dullemond 1961; Serber 1964; and others). In
this paper, the neutron-neutron potentials as introduced by
Levinger and Simmons (1961) were utilized.

Levinger and Simmons introduced three forms of potential
designated Va, VB'
of most interest, Va was not used in this paper. The V_ is a

B
square well potential with a tail of the Yukawa type, and the

and VY' but due to the poor fit in our region

VY is a complicated combination of exponentially decreasing
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terms which in effect give rise to the same kind of properties
as VB. Both potentials VB and VY are well behaved, velocity-
dependent, and, with the assumption of charge independence, are
well fitted to the lS and lD phase shifts from 20 to 340 Mev.
They are utilized in this paper. They consist of static and
velocity-dependent parts of the ordinary and exchange integrals.
The ordinary static term Vo and the ordinary velocity-dependent

. . . 5
term w, are given in the analytic forms - ak and ka , respec-

f

tively, where a and B are positive constants (which are
different for V_ and VY, and k_ is the Fermi wave number, which

B f

is related to number density by
n = kf3/(3n2)- (13)

On the other hand, the exchange terms Ve (ordinary) and W,

(velocity-dependent) depend on k_ in a complicated way. There-

f

fore, the potential terms of the equations of state are conveniently

expressed as:

3 5 3
= = - + + . -
€pp nV{(n) ( akf ka 0 7Ve Zwe)cn ergs/cm
oV oW
n ’ 2/ e e 2
P - = = + > . —_— —
PE L3 3Gk 5Bk \0 7 o 2 ™ )jc dynes/cm

(14)

where V(n) is the Levinger-Simmons potential energy per particle,
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and

c =1.602 x lO-6 ergs/Mev
o = l.3al, B = 4a2
a, = 3.02, a, = 0.045 for VB (Mev)

al = 4.02, a2

0.28 for VY (Mev) (15)
The total baryon number density n is

n = Z ny (b denotes all baryons which are present). (16)
b

ny is related to tb through the last equation in (12). v and

w, were determined numerically in the region 0O < kf < 2 (Levinger

and Simmons 1961). These values were plotted against kf and the
aVe awe
slopes have been used to determine S;— and SH— . For kf > 2,

the results were extrapolated. This procedure is justified because

Ve and W are negligible for kf R 3, as compared with the other

terms. (kf is expressed in f—l, where £ is in fermis, 10_13 cm. )

The total energy per particle is plotted against density in
Figure 3, for the Levinger-Simmons VB and VY potentials, the Skyrme
. . . 13 15 3
potential and Salpeter's potential. For 107~ < p < 10 gm/cm”,
the potentials are attractive and the total energy is less than

the case for the noninteracting particles. For p > 1015 gm/cm3,

the repulsive terms become dominant. In most of the region of




attractive potential VY is somewhat lower than VB, but the
repulsive term of VY is much larger than that of the VB. Nuclear
potentials are negligible for p < lO13 gm/cm3.

In the above equations, the potential terms were expressed
as functions of total baryon number density. This implies that
we have applied these potential interactions between baryons with-
out distinction as to the type of baryon. At the present time
general baryon interaction potentials are not known properly, so
the use of VB and VY in this way corresponds to slowly and rapidly
increasing repulsive terms among baryons at high densities.

At densities less than or equal to nuclear density, the
character of nuclear forces is reasonably well known and is given
to a rough approximation by either of the two potentials adopted
here, and the composition of the matter is mostly neutrons, for
which the potentials were originally constructed. At much greater
than nuclear density many different types of baryons are
present, and the rapidity with which nuclear forces turn repulsive
is very speculative. Therefore, the two potentials VB and V
tend to span a range of possible behavior of the nuclear forces
at high densities and the differences in the neutron star models
which result from the adoption of one or the other of these

potentials will give an indication of the uncertainty due to lack

of knowledge in this field.
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In the above equations of state, bosons are not included,
because the only bosons considered and listed in (2) are negative
pions, which are most unlikely to exist at densities below about
lO17 gm/cm3, while the equation of state becomes independent of
composition and the above Levinger-Simmons type equations of
state cease to be valid long before such high densities are reached.
This restriction is imposed due to two reasons. One is that in
the case of a perfect fluid there is a relativistic limitation on
the pressure that it cannot exceed one-third of the proper energy
density (Landau and Lifshitz 1959). The other more general
restriction which may apply in a fluid with anisotropic properties
is that the pressure cannot exceed the energy density (Zel'dovich
1962). TIf this were to be violated the speed of sound would
exceed the speed of light in the medium. Accordingly, the
Levinger-Simmons equations of state were cut off with one of
these pressure saturation conditions at the high density limit.

In order to determine the composite equation of state as
described above, we must know the equilibrium composition as a
function of density. To examine this problem, let us go back to
Figure 2. 1In region (I) the nuclear abundances as calculated in
a separate paper (Tsuruta and Cameron 1965) are valid. In the higher
density region marked (III) the hyperonic mixture as obtained

in the last section applies. Care may have to be taken in dealing
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with the intermediate region marked (II). When the density
. 11 3 . . .
is about 3 x 10 gm/cm” (the point marked (a) in Figure 2) the

. . . 120
electron Fermi energy is about 23 Mev and nuclei such as Sr
will coexist with free neutrons. By the time we arrive at the

. . 13 3

border (b), where the density is about 8 x 10 gm/cm , all the
heavy nuclei are expected to have disappeared, leaving neutrons,
protons and electrons in equilibrium. The exact behavior of the
transition in this region is quite complicated, but the same
principles, the conservation of total energy, charge and number
of particles, control the equilibrium in this region. To prevent
a discontinuous change in the ion number densities, it was assumed
that the average charge Z changes from 38 to 1 in a smooth way
from point (a) to point (b). Then, the average ionic charge is

expressed as:

Z(p) = 1 + 37 %x(p) (17)
where
(pz-p)
x(p) = (pZ—pl) for Py =P =P, -

P is the density at (a), and Py is the density at (b).
Strictly speaking electron density increases slightly as we
go from (a) to (b) with an increase of neutron density, but this

rise is negligible and not appreciable in Figure 2. This is

because the major part of the extra energy density as we go from (a)

to
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(b) goes to neutron density. Figure 2 also indicates that there is
a rise in the total ion number density as the average ionic charge
changes from 38 to 1.
. . 13 3 ., .
In the lower density region p < 8 x 10 gm/cm it is more
convenient if the matter density p, as defined below, is used
as a free parameter.

p = Z J{l:nn+(A-Z)nk(A,Z)]mrl+[np+an(A,z):'Jlmp}+nem
k

e (18)

k represents all nuclei of appreciable abundance. Then the

energy density is expressed as

€ = € - nm - nm - nm

+ e __+
KE PE e nn PP e e

The rest mass density of P,e,n must be subtracted because both

€ and p include them. ¢ is given by (1l1l) with kK = n,pP,e; ¢

KE KE PE

is given by (14) with n = nn+np. The abundances of different
particles as a function of density were taken from Tsuruta and
Cameron (1965). The expressions for pressure in Equations (10) -
(16) are valid in this region with kK = n,p,e and n = nn+np. The
contribution of interactions between electrons is always negligible
in the problem of neutron stars (Salpeter 1961) and hence such
terms are not included in the above equations. In this low

density region the main contributor to pressure is electrons or

neutrons. The effect of the presence of heavy nuclei appears in
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the density but not in the pressure.

For the region p > 8 x 1013 gm/cm3 the composite equations
of state as described above are most easily solved by choosing tn,
the relativistic parameter for neutrons as defined in Equation (12),
as our free parameter.

The solid curves in Figure 4 represent the final composite
equations of state of type VB and VY. The nearly straight line
in the lower density region corresponds to the electron-nucleus
configuration. Even though it is not apparent from the graph,
this line is found to be slightly bent downward if we examine it
more carefully, which is due to the decrease of Z/A with the increase
in density in this region. 1In high density regions (p > 1016 gm/cm3)
the asymptotic equation P = ¢ is seen to be approached. The difference
between the two potentials V_ and VY is apparent in the most

8
. . . 1
interesting region of 10 3 < p S lO16 gm/cm3.

GENERAL RELATIVISTIC EQUATIONS OF HYDROSTATIC EQUILIBRIUM

The most general static line element exhibiting spherical

symmetry may be expressed in the following form (Tolman 1934):

2 X (r) 2 2
= -e

dr - r dez - rzsinze d¢2 + ev(r)d

2
ds t
(19)

For this line element and with the assumption that the matter

supports no transverse stresses and has no mass motion, the general
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relativistic equations of hydrostatic equilibrium are expressed

as (Oppenheimer and Volkoff 1939):

du(r) _

ar = 4meyx (20)
ap _  __(P+e) 3
ar r (220 (r)) GTE PHU(r)) (21)

where P is the pressure and € is the macroscopic energy density
both measured in proper coordinates, and U(r) is the gravitational
mass contained within a sphere of radius r. The gravitational
mass of the star, M, is obtained by integrating (20) from the
center to R, the radius of the star, where P = 0.

In this section, we use the following system of units unless

otherwise stated: the units for which

and

321 4

The quantities in this system of units are converted to those in

cgs units by multiplying them by the following conversion factors:




length: ro
mass: mO
Pressure: Po
density: Pq

— C -
# 6
- = 1. 13.7 km ~ 10
2/2m (M c) S 1.37 x 10" cm 3.7 km
n n
r c2/G = 1.85 x 1034 gm = 9.29M
o} O]
2
(Mh4c5/32n2h3)4n = 6.46 x 10°° dynes/cm

2

Po/c 7.15 x lO15 gm/cm3

The gravitational mass M as defined earlier is the mass of

the star as perceived by a distant observer.

the proper mass,

particles were dispersed to infinity.

This differs from

which is the mass the star would have if its

The proper distance and

proper time intervals in a gravitational field are determined

from:

where

drp = J—grr dr (22)
A(r) 2my "t
grr(l) © = <l ;~>
if r R
v(r) _ 2M
Igqalr) = e =\ -7 )
2U(xr)\-1
grr(r) - <l T r )
5 if r <R
_(y _ 2My /Hs
g44(r) - (l "R ) (u(r) )

(23)

5

Ro
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where Mg is the chemical potential at the surface and u(r) is the

chemical potential at distance r, which can be expressed as:
by = M(56,26)/56
u(r) = (P + €)/n (24)

M(56,26) is the mass of a free atom of 56Fe, and n is the total
baryon number density. The proper mass Mp is obtained by integra-

ting the following differential equation:

Wy o
ar 4mpr (r—2U(r)> (25)

p is the matter density as defined by Equation (7) or (18). The
total binding energy in mass units MB is obtained by integrating

the following:

dMB 1/2
ar 4mx” [p(r-z;(r)> - <] (26)

It is evident that the solution of the differential equations
(20), (21), (25), and (26) depends only on the equation of state
and on the boundary conditions at the center.

Examining the expression of the line element in Equations
(19) and (23) we note that the following inequality must be

fulfilled for any real solutions:
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R > RG = ZGM/02 = 2.94 (M/MQ) in units of km.

(27)

The limiting radius RG is called the "gravitational radius".

When R = RG' a singularity occurs. This singularity is called

the Schwarzschild singularity. On this surface, the time metric
vanishes, the curvature of space becomes infinite and no light
emitted from this surface will reach us. Hence, we will face a
serious problem if the solution of the above equilibrium equations
gives rise to a radius less than or equal to the gravitational
radius.

In the problem of neutron stars, another interesting quantity

is the gravitational red shift which is obtained from:

1.47 (M/MG) RG

cp:—-_— = _— —

A 2 R (km) T 2R

(28)

RESULTS

The equilibrium equations (20), (21), (25), and (26) have
been integrated numerically with the aid of the 7094 computer,
for each of about 120 initial values of central density in the

6 26 3 . .
range 10 <€ ¢ £ 10 gn/cm”, for each of the composite equations

of state of type V_ and VY with the pressure saturation condition

B

P < ¢. Additional integrations were carried out for the same



- 28 -

composite equations of state but with a different pressure satura-

tion condition, P < ¢/3. The integrations were terminated at

the point where log ¢ = 0. (ec is the central energy density.)
The characteristic features of the resulting models of the

type V_ and VY with the asymptotic equation of state P = € are

B
given in Tables 1 and 2. Similar results were obtained for these
models with the restriction P < ¢/3. The gravitational and

proper masses of these models (both with P < ¢ and P < ¢/3) are
plotted as functions of the central matter density pc in Figure 5.
The points where the respective form of the asymptotic equations

of state start to become applicable are marked by crosses. It is
clear that the individuality of the constituent particles becomes
indistinguishable for pc 2 lOl6 gm/cm3. The models lying along

the lower branch of the principal mass peak are stable, while the
models beyond this point are unstable (Tsuruta 1965, Harrison,
Thorne, Wakano and Wheeler 1965). Hence, the effect of the pressure
saturation condition P < ¢ or P < ¢/3 is negligible for most of

the stable neutron stars. However, different assumptions of the
pressure saturation condition give rise to a small shift in the
values of mass, radius, etc., for models near and above the
principal mass peak. A small local mass peak is observed in the

intermediate region between the regions of white dwarfs and neutron

stars. This is the region where we assumed a smooth but crude
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dissolution of ions into nucleons. The reality of this small

peak is questionable and requires further investigation. We
conveniently use the expression "pressure saturation condition"

to refer to the phenomenon that the pressure is not allowed to go
beyond certain limits which are functions of energy density.
"Ideal" gas models refer to models consisting of non-interacting
particles, and "real" gas models refer to the models for which some
interaction potential between baryons is assumed.

The mass-radius relation for the entire range of central
density is shown in Figure 6. The portion marked (I) belongs to
the white dwarf region. Around the region marked (II) lie a series
of models in the intermediate region where inverse beta processes
change the equilibrium composition rapidly with change of density.
Around the region marked (III) lie neutron and hyperon stars. The
solid curves represent our "real" gas models of VB and VY type,
and the dashed curve marked (a) and that marked (b) represent the
"ideal" gas and "real" gas models constructed by Ambartsumyan and
Saakyan (1962a), respectively. The masses are significantly increased
when the nuclear forces are taken into account. In the absence of
nuclear forces, the maximum mass of neutron stars is only about 0.67
of the mass of the sun, while it can be as large as twice the solar
mass in the presence of nuclear forces.

The radius of the models of type V_ and VY is plotted as a

B

function of central energy density in Figure 7. At the points
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marked D, the models are as large as some of white dwarfs. The
density at the center of these models is about 4 ~ 7 x 1013 gm/cm3.
These models have the interesting configuration of a small central
core of neutrons (with small concentration of electrons and protons)
surrounded by huge envelopes consisting of electrons and heavy nuclei,
whose exact composition changes from layer to layer as we approach
the surface. We shall call these envelopes "electron-nucleus"
envelopes. The possible existence of these extended envelopes of
electrons and heavy ions was first suggested by Hamada and Salpeter
(1961) and is confirmed in this paper. Other points marked by
crosses and letter symbols are some of the critical points as
defined in Table 3. The radius-central density relation in the
region of neutron and hyperon stars is shown in an enlarged scale
in Figure 8. The "ideal" gas models are also shown for comparison.
We note that the effect of the presence of nuclear forces on

stellar radius is not so significant as that on mass.

We have observed in earlier figures various critical points
where major and minor maxima and minima in masses and radius occurred.
These points are marked by letter symbols A,B C, etc., in the
order of increasing density, in Figure 9. The nature and charac-
teristic features of each critical point are summarized in Table 3.
One of the most interesting properties of cold dense stars is that

the stellar parameters such as mass, total baryon number, radius,
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binding energy, components of metric tensor, etc., exhibit damped
oscillations as functions of central density of the star. To
examine the behavior of these oscillations more closely, the
amplitude fall-off factor and the peak-to-trough separations for
each critical point of the oscillation of mass at sufficiently
high densities were calculated for our models of the VB and V

type with the asymptotic equation of state P = €. These values are
listed in the last two columns of Table 3. Theoretical values

of these quantities were predicted by Harrison, Thorne, Wakano

and Wheeler (1965) to be

Amplitude fall-off factor = exp (ma/B) 3.95 for vy = 4/3(P = ¢/3)

and = 6.147 for vy = 2(P = ¢)
(29)
and
Alog , € = 2 x 0.4343 n/B = 1.59 for y = 4/3(P = ¢/3)
and = 1.578 for vy = 2(P = ¢),
(30)
where 3 _ <l\
a 2 y)
1/2
79 1y 1 . .
= - + — - =
B [ \;7‘) <Y ) 4 ] ;Y the adiabatic exponent

(31)
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At sufficiently high densities the approximation P = ¢ should be
valid for our real gas models of VB and VY shown in Table 3. The
agreement between our results and the theoretical values in
Equations (29) and (30) is quite satisfactory within the estimated
order of accuracy. Figure 9 shows the damped oscillations of
radius and mass for the VY models with P < ¢. We see that the
oscillation of radius is somewhat out of phase with the oscillation
of mass.

To show the effect of having a composite hyperonic mixture,
the composite models and models calculated for a pure neutron
configuration are drawn together in Figure 10. The presence of
other subatomic particles lowers the partial pressure of the
neutrons, and, consequently, smaller stellar masses are expected
for the resulting composite models than for the pure neutron stars.
This effect of composition, however, is seen to be very small as
compared with some other effects such as the effect of nuclear
forces.

The internal distribution of matter is shown in Figure 11 for
six models of interest. Their properties are given in Table 4.
The models marked (1) contain about 0.2 solar mass and consist
of large but condensed cores of neutrons surrounded by large
envelopes of electrons and nuclei. The envelopes are about 1/3

in width of the total stellar radius. However, such envelopes
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quickly diminish for slightly denser stars of ~ 4 x lO14 gm/cm3 and
they are never important for models with higher densities. The
internal distribution of matter for stars denser than this is almost
constant until the density goes beyond e€ ~ lO17 gm/cm3. For

higher densities matter starts to accumulate near the center and the
deviation from homogeneity becomes serious. For models with

e€ p=/ lO18 gm/cm3 the additional density appears only at the center,
leaving the rest of the interior practically intact. For instance,
the model of € ~ 1019 gm/cm3 and that of e© ~ 1024 gm/cm3 with

the same equation of state have practically the same internal and
external structure, except at the center.

The internal distributions of various stellar parameters are
given in Table 5, for two models of type VY, the one lying just
below and the other just above the principle neutron mass peak.

It is interesting to note that the binding energy is negative in
the central core but it becomes positive in the outer layers.

The internal distribution of the radial and time metrics - grr(r)
and g44(r) for "ideal" gas models were studied by Ambartsumyan and
Saakyan (1962b). By comparing their results with our results for
the "real" gas models shown in Tables 1, 2, and 5, it is obvious
that the non—Euclidean nature of space is more strongly pronounced

both in the interior and on the surface when nuclear forces are

taken into account.
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When the central density of neutron stars is higher than
ordinary nuclear densities but is less than about 1015 gm/cm3,
they are generally composed of a condensed neutron-dominant core
surrounded by thin or negligible envelopes of electron-nuclear
configuration. These stars were called neutron star models in
our discussion. The stars of densities higher than this consist
of a condensed hyperon-dominant core surrounded by thin neutron
dominant outer layers. These are called hyperon stars in this
paper. The electron-nuclear envelopes are always negligible for

these hyperon stars.

DISCUSSION
It may be noted that some of the characteristics of dense
stars depend greatly not only on the presence of nuclear forces
but also on the exact form of these forces. For instance, both
the radii and masses of the VY type models of dense neutron and
hyperon stars are about twice as large as the corresponding values
of the VB type models. It is most desirable to further improve

the nuclear equation of state in the critical region of

1014.5 <o < lOl6.5

3
gm/cm” .

It is gratifying that the effect of the exact composition of
the hyperonic mixture is so small. Even if the threshold density

of the appearance of some of the mesons and hyperons is shifted

to as low as ordinary nuclear density, the resulting change of
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composition will not seriously affect the major properties of cold
models of neutron and hyperon stars reported in this paper unless
there is a large accompanying change in the interaction potentials.
There are certain physical variables whose values are greatly
affected by the presence of nuclear forces but are relatively
insensitive to the exact form of the nuclear potential. These are
the variables which depend on the ratio of mass to radius. For
instance, the red shifts of both the VB and VY type models are about
two to three times as large as the corresponding values for the
"ideal" gas models. The maximum red shift and the largest
departure from Euclidean space are noted at a point just above

the principal mass peak of the neutron stars (point F in Figures 6

and 9). At this point, the red shift of both the VB

and VY type
model is about 0.32 while that of the "ideal" gas model is only about
0.15. The non-Euclidean nature of space is enhanced by a factor
of 2 when either the VB or VY type nuclear potential is included.
However, the departure from the Euclidean characteristics is not
large enough to produce a Schwarzschild singularity for all the
models constructed in this paper. (See Equation (28) and Tables
1 and 2.)

A complicated effect of nuclear forces appears in the property
of binding energy. When the constituent baryons become relativistic

the binding energy, which is the proper mass minus gravitational
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mass, becomes negative if nuclear forces are neglected (Tsuruta
1964, Misner and Zapolsky 1964). The same argument does not
necessarily apply when the interaction forces enter. Depending

on the different assumptions of the nuclear forces, the negative
binding may or may not occur. For instance, the binding energy
becomes negative for sufficiently dense models of "real" gases
constructed by Ambartsumyan and Saakyan (1962b), but all the other

nuclear models we have studied (the Levinger-Simmons V_ and VY type,

B
and Skyrme type potentials) fail to give negative binding energies
for relativistic baryons.

It is interesting to note, however, that a small negative bind-
ing of about 1% of the stellar mass occurs in the lower density
regions of 1012 < e <8 -9x lO13 gm/cm3, below the nuclear
densities. This is caused by the presence of relativistic electrons.
At these densities the concentration of neutrons is not sufficiently
large to overcome the effect of relativistic electrons.

Some of the properties of cold degenerate stars seem to be
independent of the type of equation of state to be adopted. The
gravitational mass, the proper mass (or total baryon number) and
the binding energy exhibit damped oscillations in phase with each
other as functions of central density. Hence the point of tightest

binding is also the point of maximum mass and maximum baryon number.

We have seen that the stellar radius also oscillates as a function
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of central density but the oscillation is partly out of phase with
the oscillations of the masses. Other interesting variables, the
components of the metric tensor and the red shift, also show similar
damped oscillations as the central density is increased. Their
oscillations are in phase with each other but are not in phase
with the oscillations of either the radius or the mass. These
properties are found to be common to all different types of equation
of state studied by us.

It may be noted that in the models of mass less than about

0.2M®,

the binding energy is much less than 1% of the total mass
(Table 1 and 2). Such models are energetically unstable against
transformation into iron white dwarfs (Cameron 1959). We have
noted that the models lying above the principal mass peak (point F)
are dynamically unstable. Hence the stable neutron stars, if
observable, are expected to lie in the small range of density
corresponding to the region 0.2MO S ML 2MO' The binding energy
is only about 1% of the total stellar mass for the lightest of the
stable neutron stars but at the mass peak it is as large as about
20% of the observable mass.

Another outcome which may well be noted is the possible
importance of the "electron-nucleus" envelopes in some of the

lightest stable neutron stars. The most extended envelopes were

seen to occur in unstable regions, but it was shown that some of the
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stable neutron stars could have quite an extended envelope

also, almost as large as the neutron core itself. The mass
contained in such envelopes is negligible. Therefore, any physical
variables which depend on radius can be greatly affected by the
presence of these envelopes. Red shift is an important stellar
parameter in the problem of observation. By neglecting the
envelopes of electrons and heavy nuclei, about 50% error in the
value of red shift could occur for some of the lightest stable

neutron stars.
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TABLE CAPTIONS

Table 1l: Characterisitics of Composite Models of Degenerate Stars
with the Nuclear Potential Vg and the Asymptotic Equation of
State P = ¢; p€ is the central pressure in dynes/cmz,

P, = (Mn4c5/32ﬁ2h3¥MT=6.46x1036 dynes/cmz, e is the total
energy density at the center and pc is the total matter density
at the center in gm/cm3, R is the coordinate radius of the
star, M, Mp’ and MB are the gravitational and proper mass
and the binding energy in mass units, M@ is the mass of the
sun, tnc is the relativistic parameter for neutrogs at the

center, (R) is the time metric and —grr(R) is the radial

Ja4q
metric at the surface.

Table 2: Characterisitics of Composite Models of Degenerate Stars
with the Nuclear Potential Vy and the Asymptotic Equation of
State P = ¢; the notation is that introduced in Table 1.

Table 3: Properties of Critical Points; the letters A, B, C, etc.,
denote the various critical points in order of increasing
central density of the models ; MAX. 1, etc., means the first
maximum point, etc.; MIN. 2, etc., means the second minimum
point, etc.; the capital letters in ( ) stand for the names

of the persons who recognized or identified these points

first (C = Cameron, H = Harrison, L = Landau, M = Misner,

\ o Oppenheimer, HS = Hamada and Salpeter, T = Tsuruta,

‘ V = Volkoff, WW = Wakano and Wheeler, and Z = Zapolsky); the

—




models HTWW are models constructed by Harrison, Thorne,
Wakano and Wheeler; IDEAL means the models with no nuclear
interactions, (AMn_l/AMn) stands for the amplitude fall-off
factor, and (ALOG ec) means the peak-to-trough separation

in the 1LOG ¢ vs M/MO plane. Remaining notation is that
introduced in Table 1. The second and third columns explain
the nature of the critical points designated A, B, C, etc.,
the 4th column explains the type of model for which the
calculations in the last 5 columns were made, and the last

5 columns give the characteristic properties at these points.

Table 4: This table gives the properties of the models used in
Figure 11. The notation is that introduced in Table 1.

Table 5: Internal Distribution of Various Stellar Parameters for
two models of the Vy type. The model (A) is slightly less
dense and the model (B) is slightly denser than the configura-
tion of maximum mass. r is the radial distance from the
center, c¢(r), tn(r), —grr(r), and g44(r) are the energy
density, relativistic parameter for neutrons, the radial and

time metrics, all at the point r from the center. U(r)/Mo

and Mp(r)/MO are the gravitational and proper mass of matter
in solar mass units contained within the radius r, and

MB(r) = Mp(r)—U(r)
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TABLE 4

Vg (1) Vg (2) Vg (3) v, (1) vy (2) vy (3)
M/M 0.1996 0.9663 0.7710 0.2003 1.9529 1.4912
R (km) 18.219 5.1842 4.063 17.79 9.940 7.801
LoG e° 14.5262 16.0216 | 23.8546 14.3779 15.4728 | 23.8546
LoG € 14.5137 15.9174 19.0202 14.3678 15.3369 18.7216
tnC 1.476 2.932 9.242 1.326 2.422 8.374
p</p 7%10™% 0.7 108 5x10"2 0.2 108
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FIGURE CAPTIONS

Figure 1: Number densities in cm_3 of various sub-atomic particles
as functions of total matter density in gm/cm3. The symbols n,
p, A, ¥, 2°, Z+, =, 8%, e, u”, n* and p* stand for neutrons,
protons, hyperons corresponding to their respective symbols,
electrons, negative muons, and neutrons and protons in the
first excited state.

Figure 2: The composition distribution used in our composite
equation of state. The partial number densities of various
constituent particles (in units of cm—3) are plotted as
functions of total matter density (in gm/cm3).

Figure 3: Energy in Mev/particle is plotted against density in
gm/cm3, for various nuclear potentials and for non-interacting
particles.

Figure 4: Pressure is plotted against energy density for the
composite equations of state of type Vg and Vy, with the
asymptotic equation of state P = €.

Figure 5: The gravitational and proper masses of the models of
type Vg and Vy with the asymptotic equation of state of either
P =¢ or P=¢/3. The points at which the composite equations

of state switch over to the asymptotic equatiors of state are

shown by crosses.




Figure 6: The mass-radius relation of the composite models of
the type Vg and Vy with the pressure saturation condition
P < ¢ (solid curves). The points A, B, C, etc., are the
critical points aé explained in Table 3. The regions (I),
(1), and (III) are the regions of white dwarfs, the inter-
mediate regions, and the regions of neutron and hyperon stars.
The dashed curves are the "ideal" gas models (a) and "real"
gas models (b) constructed by Amburtsumyan and Saakyan (1962a).

Figure 7: The relation between the radiﬁs and central energy
density for the composite models of the Vg and Vy type. Some
of the critical points in low density regions are shown by
crosses and the corresponding letter symbols as introduced
in Table 3.

Figure 8: The relation between the radius and the central energy
density in the region of neutron stars is shown in detail.
For comparison, the models of "ideal" gases are shown as a
dashed curve, together with the "real" gas models of the
Vg and Vy type (solid curves).

Figure 9: The damped oscillations of the gravitational mass and
radius as functions of central energy density. The regions
(), (II), and (III) are those defined in Figure 6. The
points A, B, C, etc., stand for the critical points explained
in Table 3. The peaks and troughs of mass and radius are

shown by the respective marks.




Figure 10: The effect of the presence of hyperons. The models
of the Vg and Vy type are shown both for the configuration
of pure neutrons (déshed curves) and for the baryonic mixtures
(solid curves).

Figure 11l: Internal distribution of energy density for 6 models
whose characteristic properties are listed in Table 4. The
solid curves represent the'VY type models and the dashed
curves represent the Vg type models. These were selected
from (1) the region of the lightest stable neutron stars,

(2) the region near the principal mass peak (point F in

Figure 9), and (3) the region of superdense stars with

€ ~ 10%* gm/en®.
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